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Abstract. The collective schedules problem consists in computing a
schedule of tasks shared between individuals. Tasks may have different
duration, and individuals have preferences over the order of the shared
tasks. This problem has numerous applications since tasks may model
public infrastructure projects, events taking place in a shared room, or
work done by co-workers. Our aim is, given the preferred schedules of
individuals (voters), to return a consensus schedule. We propose an ax-
iomatic study of the collective schedule problem, by using classic axioms
in computational social choice and new axioms that take into account the
duration of the tasks. We show that some axioms are incompatible, and
we study the axioms fulfilled by three rules: one which has been studied
in the seminal paper on collective schedules [17], one which generalizes
the Kemeny rule, and one which generalizes Spearman’s footrule. From
an algorithmic point of view, we show that these rules solve NP-hard
problems, but that it is possible to solve optimally these problems for
small but realistic size instances, and we give an efficient heuristic for
large instances. We conclude this paper with experiments.
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1 Introduction

In this paper, we are interested in the scheduling of tasks of interest to different
people, who express their preferences regarding the order of execution of the
tasks. The aim is to compute a consensus schedule which aggregates as much as
possible the preferences of the individuals, that we will call voters in the sequel.

This problem has numerous applications. For example, public infrastructure
projects, such as extending the city subway system into several new metro lines,
or simply rebuilding the sidewalks of a city, are often phased. Since workforce,
machines and yearly budgets are limited, phases have to be done one after the
other. The situation is then as follows: given the different phases of the project (a
phase being the construction of a new metro line, or of a new sidewalk), we have
to decide in which order to do the phases. Note that phases may have different
duration – some may be very fast while some others may last much longer. In
other words, the aim is to find a schedule of the phases, each one being considered
as a task of a given duration. In order to get such a schedule, public authorities
may take into account the preferences of citizens, or of citizens’ representatives.
Note that tasks may not only represent public infrastructure projects, but they
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may also model events taking place in a shared room, or work done by co-workers
(the schedule to be built being the order in which the events – or the work to
be done – must follow each other).

This problem, introduced in [17], takes as input the preferred schedule of
each voter (the order in which he or she would like the phases to be done), and
returns one collective schedule – taking into account the preferences of the voters
and the duration of the tasks. We distinguish two settings. In the first one, each
voter would like each task to be scheduled as soon as possible, even if he or she
has preferences over the tasks. In other words, if this were possible, all the voters
would agree to schedule all the tasks simultaneously as soon as possible. This
assumption – the earlier a task is scheduled the better – , will be denoted by
EB in the sequel. It was assumed in [17], and is reasonable in many situations,
in particular when tasks are public infrastructure projects. However, it is not
relevant in some other situations. Consider for example workers, or members of
an association, who share different works that have to be done sequentially, for
example because the tasks need the same workers, or the same resource (e.g.
room, tool). Each work (task) has a given duration and can imply a different
investment of each worker (investment or not of a person, professional travel,
staggered working hours, ...). Each worker indicates his or her favorite schedule
according to his or her personal constraints and preferences. In this setting, it is
natural to try to fit as much as possible to the schedules wanted by the workers
– and scheduling a task much earlier than wanted by the voters is not a good
thing. In this paper, our aim is to compute a socially desired collective schedule,
with or without the EB assumption.

This problem generalizes the consensus ranking problem, since if all the tasks
have the same unit length, the preferred schedules of the voters can be viewed as
preferred rankings of tasks. Indeed, each task can be considered as a candidate
(or an item), and a schedule can be considered as a ranking of the candidates
(items). Computing a collective schedule in this case consists thus in computing
a collective ranking, a well-known problem in computational social choice.

Related work. Our work is at the boundary between computational social
choice [6] and scheduling [7], two major domains in artificial intelligence and
operational research.

As mentioned above, the collective schedule problem generalizes the collective
ranking problem, which is an active field in computational social choice (see e.g.
[12,21,8,20,5,13,2,16]). In this field, authors often design rules (i.e. algorithms)
which return fair rankings, and they often focus on fairness in the beginning of
the rankings. If the items to be ranked are recommendations (or restaurants,
web pages, etc.) for users, the beginning of the ranking is indeed probably the
most important part. Note that this does not hold for our problem since all the
planned tasks will be executed – only their order matters. This means that rules
designed for the collective ranking problem are not suitable not only because
they do not consider duration for the items, but also because they focus on the
beginning of the ranking. This also means that the rules we will study can be
relevant for consensus ranking problems where the whole ranking is of interest.
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As mentioned earlier, the collective schedule problem has been introduced
in [17] for the EB setting. In this paper, the authors introduced a weighted vari-
ant of the Condorcet principle, called the PTA Condorcet principle, where PTA
stands for “Processing Time Aware” (cf. page 8), and they adapted previously
known Condorcet consistent rules when tasks have different processing times.
They also introduced a new rule, which computes a schedule which minimizes
the sum of the tardiness of tasks between the preferred schedules of the voters
and the schedule which is returned. They show that the optimization problem
solved by this rule is NP-hard but that it can be solved for reasonable instances
with a linear program.

Up to our knowledge, there is no other work which considers the schedule of
common shared tasks between voters, or agents. Multi agent scheduling problems
mainly focus on cases where (usually two) agents own their own tasks, that are
scheduled on shared machines: the aim is to find a Pareto-optimal and/or a fair
schedule of the tasks of the agents, each agent being interested by her own tasks
only [19,1].

We conclude this related work section by mentioning similarities between our
problem and the participatory budgeting problem, which is widely studied [3].
In the participatory budgeting problem, voters give their preferences over a set
of projects of different costs, and the aim is to select a socially desirable set of
items of maximum cost B (a given budget). The participatory budgeting prob-
lem and the collective schedules problems have common features. They both
extend a classical optimization problem when users have preferences: the partic-
ipatory budgeting problem approach extends the knapsack problem when users
have preferences over the items, while the collective schedules problem extends
the scheduling problem when users have preferences on the order of the tasks.
Moreover, when considering unit items or tasks, both problems extend famous
computational social choice problems: the participatory budgeting problem gen-
eralizes the multi winner voting problem when items have the same cost, and
the collective schedules problem generalizes the collective ranking problem when
tasks have the same duration. For both problems, because of the costs/lengths
of the items/tasks, classical algorithms used with unit items/tasks may return
very bad solutions, and new algorithms are needed.

Our contribution and map of the paper.

– In section 2, we present three rules to compute consensus schedules. We
introduce the first one, that we will denote by PTA Kemeny, and which
extends the well-known Kemeny rule used to compute consensus rankings in
computational social choice [6]. The two other rules come from scheduling
theory, and were introduced in [17]: they consist in minimizing the sum of
the tardiness of tasks in the returned schedule with respect to the voters’
schedules (rule ΣT), or in minimizing the sum of the deviation of tasks with
respect to the voters’ schedules (rule ΣD). Note that this last rule is equal
to the Spearman’s footrule [11] when the tasks are unitary.

– In section 3, we study the axiomatic properties of the above mentioned rules
by using classical social choice axioms as well as new axioms taking into
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account the duration of the tasks. Table 1 summarizes our results. We also
show incompatibilities between axioms: we show that a rule which is neutral,
or which is based on a distance, both does not fulfill the PTA Condorcet
consistency property, and can return a schedule with a sum of tardiness as
far from the optimal as wanted.

– In Section 4, we show that the PTA Kemeny and ΣD rules solve NP-hard
problems and we propose a fast heuristic which approximates the ΣD rule.

– In Section 5, we see that the PTA Kemeny and ΣD rules can be used for
small but realistic size instances, and that the heuristic presented in the
previous section returns schedules which are very close to the ones returned
by ΣD. We also compare the performance of the three rules on the sum of
tardiness or deviations of the tasks in the returned schedules.

Due to space constraints, some proofs are omitted. Let us now introduce formally
our problem and present the three rules that we will study in the sequel.

2 Preliminaries

Definition of the problem and notations. Let J ={1, . . . , n} be a set of n
tasks. Each task i∈J has a length (or processing time) pi. We do not consider
idle times between the tasks, and preemption is not allowed: a schedule of the
tasks is thus a permutation of the tasks of J . We denote by XJ the set of all
possible schedules. We denote by V = {1, . . . , v} the set of v voters. Each voter
k∈V expresses her favorite schedule Vk∈XJ of the tasks in J . The preference
profile, P , is the set of these schedules: P = {V1, . . . ,Vv}.

Given a schedule S, we denote by Ci(S) the completion time of task i in S.
We denote by di,k the completion time of task i in the preferred schedule of voter
k (i.e. di,k=Ci(Vk)) – here d stands for “due date” as this completion time can
be seen as a due date, as we will see in the sequel. We denote by a �S b the fact
that task a is scheduled before task b in schedule S. This relation is transitive,
therefore, if, in a schedule S, task a is scheduled first, then task b and finally
task c, we can describe S as (a �S b �S c).

An aggregation rule is a mapping r : (XJ )v→XJ that associates a schedule
S – the consensus schedule – to any preference profile P . We will focus on three
aggregation rules that we introduce now: ΣD, ΣT and PTA Kemeny.

Three aggregation rules.

A) The ΣD rule. The ΣD rule is an extension of the Absolute Deviation (D)
scheduling metric [7]. This metric measures the deviation between a schedule
S and a set of given due dates for the tasks of the schedule. It sums, over
all the tasks, the absolute value of the difference between the completion time
of a task i in S and its due date. By considering the completion time di,k of
task i in the preferred schedule Vk as a due date given by voter k for task
i, we express the deviation D(S,Vk) between schedule S and schedule Vk as
D(S,Vk) =

∑
i∈J |Ci(S) − di,k|. By summing over all the voters, we obtain a

metric D(S, P ) measuring the deviation between a schedule S and a preference
profile P :
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D(S, P ) =
∑
Vk∈P

∑
i∈J
|Ci(S)− di,k| (1)

The ΣD rule returns a schedule S∗ minimizing the deviation with the pref-
erence profile P : D(S∗, P )=minS∈XJ D(S, P ).

This rule was introduced (but not studied) in [17], where the authors observed
that, if tasks have unitary lengths, this rule minimizes the Spearman distance,
which is defined as S(S,Vk)=

∑
i∈J |posi(S)− posi(Vk)|, where posj(S) is the

position of item j in ranking S, i.e. the completion time of task j in schedule S
if items are unitary tasks.

B) The ΣT rule. This rule, introduced in [17], extends the classical Tardiness
(T) scheduling criterion [7]. The tardiness of a task i in a schedule S is 0 if task i
is scheduled in S before its due date, and is equal to its delay with respect to its
due date otherwise. As done for ΣD, we consider the completion time of a task
i in schedule Vk as the due date of voter k for task i. The sum of the tardiness
of the tasks in a schedule S compared to the completion times in a preference
profile P is then:

T (S, P ) =
∑
Vk∈P

∑
i∈J

max(0, Ci(S)− di,k) (2)

The ΣT rule returns a schedule minimizing the sum of tardiness with P .

C) The PTA Kemeny rule. We introduce a new rule, the Processing Time
Aware Kemeny rule, an extension of the well-known Kemeny rule [14]. The
Kendall tau distance is a famous metric to measure how close two rankings are:
it counts the number of pairwise disagreements between two rankings (for each
pair of candidates {a, b} it counts one if a is ranked before b in one ranking and
not in the other ranking). The Kemeny rule minimizes the sum of the Kendall
tau distances to the preference profile, i.e. the voter’s preferred rankings.

Despite its good axiomatic properties, this rule, which does not take into ac-
count the length of the tasks, is not suitable for our collective schedules problem.
Consider for example an instance with only two tasks, a short task a and a long
task b. If a majority of voters prefer b to be scheduled first, then in the returned
schedule it will be the case. However, in EB settings, it may be suitable that a
is scheduled before b since the small task a will delay the large one b only by a
small amount of time, while the contrary is not true.

We therefore propose a weighted extension of the Kemeny rule: the PTA
Kemeny rule, which minimizes the sum of weighted Kendall tau distances be-
tween a schedule S and the schedules of the preference profile P . The weighted
Kendall tau distance between two schedules S and Vk counts the weighted num-
ber of pairwise disagreements between two rankings; for each pair of tasks {a, b}
such that b is scheduled before a in Vk and not in S, it counts pa. This weight
measures the delay caused by task a on task b in S (whereas a caused no delay
on b in Vk). The score measuring the difference between a schedule S and P is:

∆PTA(S, P ) =
∑
Vk∈P

∑
{a,b}∈C2

1a�Sb,b�Vk
a × pa (3)
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Resoluteness. Note that each of these rules returns a schedule minimizing an
optimization function, and that it is possible that several optimal schedules exist.
In computational social choice, rules may be partitioned into two sets: resolute
and irresolute rules. A rule is resolute if it always returns one single solution, and
it is irresolute if it returns a set of solutions. Thus, rules optimizing an objective
function may either be irresolute, and return all the optimal solutions, or they
can be resolute and use a tie-breaking mechanism which allows to determine a
unique optimal solution for each instance.

Irresolute rules have the advantage that a decision maker can choose among
the optimal solutions, the one that he or she prefers. However, the set of opti-
mal solutions can be large, and sometimes even exponential, making it difficult
to compute in practice. Furthermore, in real situations, there is not always a
decision maker which makes choices, and an algorithm has to return a unique
solution: in this case, the rule must be resolute and needs to use a tie breaking
rule that allows to decide between the optimal solutions.

In this paper, we consider that each rule returns a unique solution. However,
since a good tie breaking mechanism is usually dependent on the context, we will
not describe it. Instead, we will study the properties of the set of optimal solu-
tions and see if using a tie breaking mechanism impacts the axiomatic properties
of the rule – as we will see, most of the time, this will not be the case.

3 Axiomatic properties

3.1 Neutrality and PTA neutrality.

The neutrality axiom is a classical requirement of a social choice rule. A rule is
neutral if it does not discriminate apriori between different candidates. Note that
this axiom can be fulfilled only by irresolute rules, since a resolute rule should
return only one solution, even when there are only two equal length tasks a and
b, and two voters: one voter who prefers that a is before b, while the other voter
prefers that b is before a (the same remark holds for consensus rankings instead
of consensus schedules). Therefore, in this subsection we will consider that our
three rules return all the optimal solutions of the function they optimize.

Definition 1. (Neutrality) Let r be an aggregation rule, P a preference pro-
file, and S∗ the set of solutions returned by an irresolute rule r when applied on
P . Let P(a↔b) be the preference profile obtained from P by switching the posi-
tions of two candidates (tasks) a and b in all the preferences and S∗(a↔b) the set
of solutions returned by r on P(a↔b). The rule r is neutral iff, for each solution S
in S∗, there exists a solution S(a↔b) in S∗(a↔b), such that S(a↔b) can be obtained
from S by swapping the positions of a and b.

Proposition 1 The ΣD rule is not neutral even if it does not apply any tie-
breaking mechanism.

As we will see later, the ΣT and the PTA Kemeny rules do not fulfill neu-
trality (this will be corollaries of Propositions 5 and 7).
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Since neutrality leads to unsatisfactory solutions, and since we want an equal
treatment between comparable tasks, we introduce the PTA neutrality axiom,
which ensures that two tasks of equal length are considered in the same way.

Definition 2. (PTA neutrality) Let r be an aggregation rule, P a preference
profile, and S∗ the set of solutions returned by an irresolute rule r when applied
on P . Let P(a↔b) be the preference profile obtained from P by switching the
positions of two tasks a and b in all the preferences and S∗(a↔b) the set of solutions
returned by r on P(a↔b). The rule r is PTA neutral iff, for any two tasks a and
b such that pa = pb, for each solution S in S∗, there exists a solution S(a↔b) in
S∗(a↔b), such that S(a↔b) can be obtained from S by swapping the positions of a
and b.

The PTA neutrality axiom extends the concept of neutrality for the cases in
which tasks (candidates) have lengths (weights). This axiom ensures that two
candidates with the same characteristics are treated equally. When all the tasks
have the same length, the PTA neutrality axiom is equal to the neutrality axiom.

Proposition 2 The PTA Kemeny, ΣD and ΣT rules are PTA neutral if they
do not apply any tie-breaking mechanism.

3.2 Distance.

Some aggregation rules are based on the minimization of a metric. By metric,
we mean a mapping between a pair of elements, most of the time a preference
and a solution, and a value. Most of these rules then sum these values over
the whole preference profile to evaluate the difference between a solution and a
preference profile. For example, the ΣT rule returns a schedule minimizing the
sum of tardiness with the preferences of the profile. If the metric is a distance
(i.e. it satisfies non-negativity, identity of indiscernible, triangle inequality and
symmetry), we say that the aggregation rule is “based on a distance”.

Proposition 3 The absolute deviation metric is a distance.

Sketch of the proof. ΣD fulfills non negativity, identity of indiscernibles, sym-
metry and triangle inequality because of the absolute value properties. ut

As we will see in the sequel (Propositions 6 and 8), the fact that the D metric
is a distance implies that the ΣD rule is not PTA Condorcet consistent, and that
it can return solutions with a sum of tardiness arbitrarily larger than the optimal
sum of tardiness. Before seeing this, let us start by recalling what is the PTA
Condorcet consistency property, introduced in [17].

3.3 PTA Condorcet consistency.

Definition 3 (PTA Condorcet consistency [17]). A schedule S is PTA
Condorcet consistent with a preference profile P if, for any two tasks a and b,
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it holds that a is scheduled before b in S whenever at least pa

pa+pb
· v voters put

a before b in their preferred schedule. A scheduling rule satisfies the PTA Con-
dorcet principle if for each preference profile it returns only the PTA Condorcet
consistent schedule, whenever such a schedule exist.

Note that if all the tasks have the same length, the PTA Condorcet consis-
tency is equal to the well-known Condorcet consistency [9].

Proposition 4 The PTA Kemeny rule is PTA Condorcet consistent.

Proof. Let S be a schedule returned by the PTA Kemeny rule. For the sake of
contradiction, let us suppose that, in S, there is a pair of tasks a and b such that
a is scheduled before b whereas more than pb

pa+pb
· v voters scheduled b before a

and that a PTA Condorcet schedule exists.
We study two cases. Firstly, consider the tasks a and b are scheduled consecu-
tively in S. In that case, we call S(a↔b) the schedule obtained from S in which
we swap the position of a and b. Since both schedules are identical except for
the inversion of the pair {a, b} their weighted Kendall tau scores vary only by
the number of disagreements on this pair.

– We have assumed that the number vb of voters scheduling b before a is larger
than pb

pa+pb
·v. Since in S, a is scheduled before b, the weighted disagreement

of the voters on pair {a, b} in S is larger than pb

pa+pb
· v · pa.

– In S(a↔b), b is scheduled before a. Since vb > pb

pa+pb
· v, we know that the

number va of voters scheduling a before b is smaller than pa

pa+pb
·v. Therefore,

the weighted disagreement on pair {a, b} is smaller than pa

pa+pb
· v · pb.

Thus the score of S(a↔b) is smaller than the one of S: S is not optimal for the
PTA Kemeny rule, a contradiction.

Secondly, let us consider that a and b are not consecutive in S, and let c be the
task which follows a in S. In S, it is not possible to swap two consecutive tasks
to reduce the weighted Kendall tau score, otherwise the schedule could not be
returned by the PTA Kemeny rule. Thus, by denoting by S(a↔c) the schedule S
in which we exchange the order of tasks a and c, we get that ∆PTA(S(a↔c), P )−
∆PTA(S, P ) ≥ 0. This implies that va·pc−vc·pa ≥ 0 and va· pc

pa+pc
−vc· pa

pa+pc
≥ 0,

where vc = v − va is the number of voters who schedule c before a in their
preferred schedule. Therefore, va ≥ v· pa

pa+pc
. Therefore, task a is scheduled before

c in any PTA Condorcet consistent schedule. By using the same argument, we
find that task c is scheduled before task d, which follows c in S, and that c has
to be scheduled before d in any PTA Condorcet consistent schedule, and so forth
until we meet task b. This set of tasks forms a cycle since a has to be scheduled
before c in a PTA Condorcet consistent schedule, c has to be scheduled before d
in a PTA Condorcet consistent schedule, . . . , until we met b. Moreover b has to
be scheduled before a in a PTA Condorcet consistent schedule since more than

pb

pa+pb
· v voters scheduled b before a. The existence of this cycle means that no

PTA Condorcet consistent schedule exists for the profile, a contradiction. ut
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3.4 Incompatibilities between axioms and properties.

One can wonder if the PTA Kemeny rule (without breaking-tie rule) is the only
rule which is PTA Condorcet consistent, neutral and which fulfills reinforcement,
just like the Kemeny rule is the only Condorcet consistent neutral rule fulfilling
reinforcement [24]. We will show that it is not true, since PTA Kemeny does
not fulfill neutrality. We even show a more general statement : no neutral rule
can be PTA Condorcet consistent. This answers an open question of [17] where
the author conjectured “that rules satisfying neutrality and reinforcement fail
the PTA Condorcet principle” and said that “it is an interesting open question
whether such an impossibility theorem holds”.

Proposition 5 No neutral rule can be PTA Condorcet consistent.

Proof. Let us consider an instance I with an odd number of voters v ≥ 3, two
tasks a and b, such that pa = 1 and pb = v, and a preference profile as follows:
va = v−1

2 voters prefer schedule a � b (this schedule will be denoted by A), and
vb =

v+1
2 voters prefer schedule b � a (schedule denoted by B).

By contradiction, let us suppose that r is a rule which is both neutral and
PTA Condorcet consistent. Since r is PTA Condorcet consistent, it will necessar-
ily return the only PTA Condorcet consistent schedule when applied on instance
I: A (indeed at least pa

pa+pb
· v = v

v+1 ≤ 1 voter prefer to schedule a before b).
Let P(a↔b) be the preference profile obtained from P in which the positions of

a and b are swapped in all the voters’ preferences. Since r is neutral, it necessarily
returns schedule A in which we have inverted a and b, i.e. schedule B. However,
this schedule is not PTA Condorcet consistent, whereas there exists a PTA
Condorcet schedule. Indeed, schedule A is a PTA Condorcet consistent schedule
for P(a↔b) since at least pa

pa+pb
· v = v

v+1 ≤ 1 ≤ va voters prefer to schedule a

before b, while pb

pa+pb
· v = v2

(v+1) is larger than vb for all values of v ≥ 3. ut

This proposition implies that the PTA Kemeny rule is not neutral, even if
no tie-breaking mechanism is used, since it is PTA Condorcet consistent.

Aggregation rules based on distance metrics have several good axiomatic
properties [6]. However, we show that they cannot be PTA Condorcet consistent.
Propositions 6, 7, and 8 can be proven in an analogous way to Proposition 5.

Proposition 6 Any resolute aggregation rule returning a schedule minimizing
a distance with the preference profile violates the PTA Condorcet consistency
property. This result holds for any tie-breaking mechanism.

Let us now show that neutrality and distance minimization can lead to very
inefficient solutions for tardiness minimization.

Proposition 7 For any α ≥ 1, there is no neutral aggregation rule returning a
set of solutions S such that all the solutions in S are α-approximate for ΣT.

Since the ΣT rule, without tie-breaking mechanism, returns only optimal solu-
tions for the tardiness minimization, this implies that the ΣT rule is not neutral.
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Proposition 8 For any α ≥ 1, there is no aggregation rule based on a distance
minimization and always returning at least one α-approximate solution for ΣT.

3.5 Length reduction monotonicity.

Let us now introduce a new axiomatic property, which is close to the discount
monotonicity axiom [22] for the participatory budgeting problem. A rule r sat-
isfies the discount monotonicity axiom if a project cannot be penalised because
it is cheaper (i.e. if a project is selected by rule r then it should also be selected
by this rule if its price decreases, all else being equal). We propose a new axiom,
that we call length reduction monotonicity, and which states that the starting
time of a task in a schedule cannot be delayed if its length decreases (all else
being equal). This axiom is particularly meaningful in EB settings, where all the
voters would like all the tasks to be scheduled as soon as possible.

Definition 4. (Length Reduction Monotonicity) Let S be the schedule re-
turned by a resolute rule r on instance I. Assume that we decrease the length
of a task t in I, all else being equal. Let S′ be the schedule returned by r on
this new instance. Rule r fulfills length reduction monotonicity if task t does not
start later in S′ than in S.

Proposition 9 The ΣD rule does not fulfill length reduction monotonicity for
any tie-breaking mechanism.

Proof. Let us consider an instance with 5 tasks {1, 2, 3, x, p} with p1 = p2 =
p3 = px = 1 and pp = 10. The preferences of the 400 voters are as follows:

x 2 1 p 3

3 2 1 p x

3 p x 1 2

3 p x 2 1

101

101

99

99

x 2 1 p 3

3 2 1 p x

3 p x 1 2

3 p x 2 1

For the profile on the left, the only schedule S minimizing the absolute devi-
ation is : 3 �S p �S x �S 2 �S 1. For the profile on the right, the only schedule
S′ minimizing the absolute deviation is such that: 3 �S′ 2 �S′ x �S′ p �S′ 1.
Task p has a reduced length but it starts later in S′ than in S: ΣD does not
fulfill length reduction monotonicity. ut

3.6 Reinforcement.

An aggregation rule r fulfills reinforcement (also known as consistency) [6] if,
when a ranking R is returned by r on two distinct subsets of voters A and B,
the same ranking R is returned by r on A∪B. Since the PTA Kemeny rule sums
the weighted Kendall tau score among the voters, it fulfills reinforcement.
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Proposition 10 The PTA Kemeny rule fulfills reinforcement.

Note that the PTA Kemeny rule fulfills reinforcement and PTA Condorcet con-
sistency, whereas the already known aggregation rules [17] for the collective
schedule problem either fulfill one or the other but not both.

3.7 Unanimity.

Let us now focus on the unanimity axiom, a well-known axiom in social choice.
This axiom states that if all the voters rank candidate a higher than candidate
b then, in the consensus ranking, a should be ranked higher than b. We take the
same definition, replacing “rank” by “schedule”:

Definition 5. (Unanimity) Let P be a preference profile and r be an aggrega-
tion rule. The rule r fulfills unanimity iff when task a is scheduled before another
task b in all the preferences in P , then a is scheduled before b in any solution
returned by r.

Note that this axiom is interesting through its link with precedence con-
straints in scheduling. Indeed, if all the voters schedule a task before another
one, it may indicate that there is a dependency between the two tasks (i.e. a
task must be scheduled before the other one). A rule which fulfills the unanimity
axiom can then infer the precedence constraints from a preference profile.

In [17], the authors prove that the ΣT rule does not fulfill unanimity (this
property is called Pareto efficiency in the paper). Let us now show that the ΣD
does not fulfill this property either.

Proposition 11 The ΣD rule does not fulfill unanimity for any tie-breaking
mechanism.

Proof. Let us consider an instance with 5 tasks {a, b, c, d, e} such that pa=pb=
pc=10, pd=pe=1 and v=88 voters. We consider the following preferences.

d a e b c

e c d a b

d b e c a

29

30

29

In this example, a short task e is always scheduled before a long task c in
the preferences. However in the unique optimal solution S for ΣD, which is
d �S c �S e �S a �S b, e is scheduled after c. Therefore, the ΣD rule does not
fulfill unanimity.

Note that, if we reverse all the schedules in the preference profile, then the
long task c is always scheduled before the short task e but has to be scheduled
after the e in the optimal solution, which is S but reversed. ut

One could expect the PTA Kemeny rule to fulfill unanimity since the Kemeny
rule does, and since it minimizes the pairwise disagreements with the voters. We
can show that this is in fact not the case, by exhibiting a a counter-example.
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Proposition 12 The PTA Kemeny rule does not fulfill unanimity for any tie-
breaking mechanism.

Note that unanimity is fulfilled if all the tasks are unit tasks. This has indeed
already been shown for ΣT [17], this can easily be shown for ΣD by using an
exchange argument, and this is true for PTA Kemeny since the Kemeny rule
fulfills the unanimity axiom.

In our context, the unanimity axiom is not fulfilled because of the lengths
of the tasks. It may indeed be better to disagree with the whole population in
order to minimize the average delay or deviation, for ΣT and ΣD, or to disagree
with the whole population if this disagreement has a small weight, in order to
reduce other disagreements which have larger weights, for PTA Kemeny. Let us
now restrict the unanimity axiom to the case where all voters agree to schedule
a small task a before a large task b: we will see that the solutions returned by the
PTA Kemeny rule always schedule a before b, that at least one optimal solution
returned by ΣT also schedules a before b, whereas all the optimal solutions for
ΣD may have to schedule b before a as we can see in the proof of proposition 11.

Proposition 13 Let a and b be two tasks such that pa ≤ pb. If task a is always
scheduled before task b in the preferences of the voters, then a is scheduled before
b in any optimal schedule for the PTA Kemeny rule.

Proof. Let us assume, by contradiction, that a schedule S such that b is scheduled
before a is optimal for the PTA Kemeny rule. Let S(a↔b) be the schedule obtained
from S by swapping the position of a and b. Let c be a task different from a
and b. If c is scheduled before b or after a in S, then the swap of a and b has no
impact on the disagreements with c. If c is scheduled between a and b, then we
have b �S c and c �S a and a �S(a↔b)

c and c �S(a↔b)
b (the order between c

and the tasks other than a and b does not change between S(a↔b) and S). Task
a is always scheduled before task b in the preferences and pa ≤ pb, therefore
the overall cost of scheduling a before c is smaller than or equal to the cost of
scheduling b before c. Furthermore, since a is always scheduled before b in the
preferences, scheduling a before b does not create a new disagreement, whereas
the cost of scheduling b before a is equal to v · pb. The overall cost of S is then
strictly larger than the cost of S(a↔b) which means that S is not optimal, a
contradiction. ut

Proposition 14 Let a and b be two tasks such that pa ≤ pb. If task a is always
scheduled before task b in the preferences of the voters, then a is scheduled before
b in at least one optimal schedule for the ΣT rule.

Thus, if we are looking for a single solution for ΣT, we can restrict the search
to solutions fulfilling the unanimity axiom for couples of tasks for which all the
voters agree that the smaller task should be scheduled first. For ΣD, we can guar-
antee solutions which fulfill this axiom for couples of tasks of the same length.

Proposition 15 Let a and b be two tasks such that pa = pb. If task a is always
scheduled before task b in the preferences of the voters, then a is scheduled before
b in at least one optimal schedule for the ΣD rule.
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Sketch of the proof. We compare the deviation of an optimal schedule S with b
scheduled before a with the deviation of the same schedule in which the positions
of a and b have been swapped. Since a and b have the same length, only their
completion times change. Furthermore, since a always ends before b in the pref-
erences, such a schedule has a deviation no larger than the deviation of S. ut

We have seen that for the ΣT and PTA Kemeny rules, if a task a is scheduled
before a task b and a is not longer than b, then there exists an optimal solution
which schedules a before b. This is not the case for ΣD. In EB settings, we
would expect well supported short tasks to be scheduled before less supported
large tasks. Therefore the ΣT and PTA Kemeny rules seem well adapted for EB
settings, while the ΣD rule seems less relevant in these settings.

3.8 Summary.

We summarize the results shown in this section in Table 1 (a “*” means that the
property has been showed in [17], the other results are shown in this paper).

Unanimity (a before b)
Rule N PTA N R PTA C LRM Distance pa < pb pa = pb pa > pb

PTA K 7 3 3 3 ? 7 3 3 7

ΣT 7 3 3* 7* ? 7 ∼ ∼ 7*
ΣD 7 3 3* 7 7 3 7 ∼ 7

Table 1. Fulfilled (3) and unfulfilled (7) axioms by the PTA Kemeny, ΣT and ΣD
rules. Symbol ∼ means that the property is fulfilled by at least one optimal solution.
The acronyms in the columns correspond to: neutrality (N), PTA neutrality (PTA N),
reinforcement (R), PTA Condorcet consistency (PTA C), length reduction monotonic-
ity (LRM).

4 Computational complexity and algorithms

In this section we study the computational complexities of the ΣD and the PTA
Kemeny rules. We will then focus on resolution methods for these rules. The
ΣT rule has already been proven to be strongly NP-hard [17]. In the same work,
authors use linear programming to solve instances up to 20 tasks and 5000 voters,
which is satisfactory since realistic instances are likely to have few tasks and a
lot of voters.

The PTA Kemeny rule is NP-hard to compute since it is an extension of
the Kemeny rule, which is NP-hard to compute [4]. Most of the algorithms
used to compute the ranking returned by the Kemeny rule can be adapted to
return the schedule returned by the PTA Kemeny rule, by adding weights on
the disagreements in the resolution method. In the following section, to compute
schedules returned by the PTA Kemeny rule, we will use a weighted adaptation
of an exact linear programming formulation for the Kemeny rule [10].

Regarding the ΣD rule, when there are exactly two voters, the problem is
easy to solve: we return one of the two schedules in the preference profile (since
deviation is a distance, any other schedule would have a larger deviation to
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the profile because of triangle inequalities). In the general case, the problem is
NP-hard, as shown below.

Theorem 1. The problem of returning a schedule minimizing the total absolute
deviation is strongly NP-hard.

Sketch of the proof and remark. We prove this theorem with a polynomial time
reduction from the strongly NP-hard scheduling problem (1|no − idle|ΣD), in
which a set of tasks have due dates, and the aim is to return a schedule S which
minimizes the sum of the deviations between the completion time of the tasks in
S and their due dates [23]. Note that the problem solved by the ΣD rule is not
a generalization of this problem since in our problem the due dates given by a
voter correspond to her preferred schedule, which is a feasible schedule, whereas
due dates in (1|no − idle|ΣD) are arbitrary. On the other hand, there is only
one due date by task in this last problem, whereas there are v due dates by task
in our problem. ut

Since computing an optimal schedule for ΣD is strongly NP-hard, we propose
two resolution methods. First, we use linear programming, allowing us to solve
exactly instances up to 15 tasks in less than 30 minutes. Second, we propose a
heuristic and the use of local search to improve the solution of the heuristic.

A heuristic for ΣD: LMT. The heuristic we propose is called LMT, which
stands for “Lowest Median Time”. For each task of J , we compute its median
completion time in the preferred schedules of the voters. The LMT algorithm
then consists in scheduling the tasks by non decreasing median completion times.

The idea behind LMT is the following one: the closer the completion time
of a task is to its median completion time, the lower is its deviation. As we will
see in Section 5, LMT performs well in practice, even if, in the worst cases, it
can lead to really unsatisfactory schedules, which can be shown by exhibiting a
worst case instance.

Proposition 16 For any α ≥ 1, LMT is not α-approximate for the total abso-
lute deviation minimization.

Local search. In order to improve the solution returned by our heuristic, we
propose a local search algorithm. We define the neighbourhood of a schedule
S as the set of schedules obtained from S in which two consecutive tasks have
been swapped. If at least one neighbour has a total deviation smaller than S, we
choose the best one and we restart from it. Otherwise, S is a local optimum and
we stop the algorithm. At each step, we study (n−1) neighbours: the complexity
is linear with the number of steps. In our experiments, by letting the algorithm
reach a local optimum, we saw that the result obtained is usually very close to
its local optimum at n steps and, that the local search always ends before 2n
steps: in practice, we can bound the number of steps to 2n without reducing the
quality of the solution.
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5 Experiments

Instances. Since no database of instances for the collective schedules problem
exists, we use synthetic instances. We generate two types of preference profiles:
uniform (denoted below by U), in which the preferences are drawn randomly,
and correlated (C) in which the preferences are drawn according to the Plackett-
Luce model [18,15]. In this model, each task i has an objective utility ui (the
utilities of the tasks are drawn uniformly in the [0,1] interval). We consider
that the voters pick the tasks sequentially (i.e. they choose the first task of the
schedule, then the second, and so forth). When choosing a task in a subset J ,
each task i of J has a probability of being picked of ui/

∑
j∈J uj . The lengths of

the tasks are chosen uniformly at random between 1 and 10 (the results do not
differ when the lengths are chosen in interval [1,5]). For all the experiments, we
will use linear programming (CPLEX) to compute one optimal solution for each
rule. Note that for most of the instances we generated, our rules had only one
optimal solution. This was the case for more than 99% of the instances for ΣT
and ΣD. For PTA Kemeny, this was the case for about 90% (resp. 95%) of the
instances for PTA Kemeny when the instance had 100 voters (resp. 250 voters),
and for 98% of cases in correlated instances with 250 voters.

Computation times. We run the two linear programming algorithms corre-
sponding to the ΣD and PTA Kemeny rules. The experiments are run on a
6-core Intel i5 processor. The mean computation times can be found in Table 2.

ΣD PTA Kemeny
Nb voters P n=4 n=8 n=12 n=4 n=8 n=12

50
U 0.01 0.28 10.4 0.004 0.02 0.05
C 0.005 0.13 0.95 0.002 0.02 0.05

500
U 0.01 25.0 104.1 0.003 2.1 4.6
C 0.006 13.4 47.6 0.003 1.3 3.8

Table 2. Mean computation times (s) for ΣD and PTA Kemeny.

These algorithms allow to solve small but realistic instances. Note that cor-
related instances, which are more likely to appear in realistic settings, require
less computation time than uniform ones. Note also that computing an optimal
schedule for PTA Kemeny is way faster than an optimal schedule for ΣD.

Performance of LMT. We now evaluate the performance of the LMT algo-
rithm in comparison to the optimal resolution in terms of computation time
and total deviation. We compute the ratio r = D(LMT,P )/D(S∗, P ) where S∗
is a schedule returned by ΣD and LMT is a schedule returned by the LMT
algorithm. We compute r before and after the local search.

The LMT algorithm alone returns solutions with a sum of deviations about
6% higher than the optimal sum of deviations. With local search, the solution
improves and gets very close to the optimal solution, with on average a sum of
deviation less than 1% higher than the optimal one. In terms of computation
time, for 10 tasks and 100 voters, the heuristic (LMT+local search) takes 0.037
seconds to return its solution before the local search, and 0.63 seconds in total,
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while the linear program takes 4.5 seconds. This heuristic is thus a very fast and
efficient alternative at rule ΣD for large instances.

Difference between the three rules. We execute the three rules on 300
instances, and we compare the schedules obtained with respect to the total devi-
ation (ΣD), the total tardiness (ΣT ) and the weighted Kendall Tau score (KT).
We compare each schedule obtained to the optimal schedule for the considered
metric. For example, the “1.06” in column ΣT in Table 3 means that, on average,
for uniform instances with 5 tasks, the schedule returned by the ΣT rule has a
sum of deviation 1.06 times larger than the minimum sum of deviation.

ΣD ΣT PTA K
P M n=5 n=10 n=5 n=10 n=5 n=10

U
ΣD 1 1 1.06 1.07 1.07 1.09
ΣT 1.12 1.16 1 1 1.01 1.02
KT 1.12 1.16 1.01 1.01 1 1

C
ΣD 1 1 1.05 1.09 1.05 1.07
ΣT 1.06 1.08 1 1 1.001 1.001
KT 1.07 1.07 1.002 1.01 1 1

Table 3. Performance of each rule relative to the others.

Table 3 shows that the schedules returned by ΣT and PTA Kemeny are very
close to each other (the values they obtain are very close), while the ΣD rule
returns more different schedules, even if the scores obtained by the three rules
do not differ from more than 16% for uniform instances and 9% for correlated
instances. Note that the number of tasks does not seem to change these results.
Overall, the PTA Kemeny and ΣT rules return similar schedules, in which short
tasks are favored, whereas the ΣD rule seems to return schedules as close as
possible to the preference profile.

Length reduction monotonicity (axiom LRM). We study to what extent
the length reduction monotonicity axiom is fulfilled in practice. We run the three
rules on 1200 instances with 50 voters and 8 tasks. Then, we reduce the length
of a random task in each of the instances, and run the three rules again. If the
reduced task starts later in the schedule returned by a rule than it did before the
reduction, we count one instance for which the rule violates LRM. On the 1200
instances, PTA Kemeny and ΣT always respected LRM. The ΣD rule violated
LRM in 102 instances (8.5%). This percentage goes up to 12.3% on uniform
instances and up to 18% on uniform instances with tasks with similar lengths.

6 Discussion and conclusion

In this paper, we showed that some standard axioms in social choice are not
adapted to the collective schedule problem, and we introduced new axioms for
tasks which have duration. These axioms may also be useful in some other con-
texts where candidates have weights. We showed incompatibilities between ax-
ioms, showing that neutral or distance based rules are not PTA Condorcet con-
sistent and do not approximate the sum of tardiness of the tasks.
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We also studied three aggregation rules for collective schedules, from an ax-
iomatic and an experimental viewpoint. We saw that the PTA Kemeny and the
ΣT rules seem to be particularly adapted in EB settings, whereas the ΣD rule
is useful in non EB settings. We conjecture that the PTA Kemeny and ΣT
rules fulfill the length reduction monotonicity axiom – this is the case in our
experiments but showing this from an axiomatic viewpoint is an open problem.
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