Asthma¶
In [1]:
import matplotlib.pyplot as plt
# import the computation tools of aGrUM
import pyAgrum as gum
# import the graphical display functions
import pyAgrum.lib.notebook as gnb
The model¶
In [2]:
# load the "asthma" Bayesian network
bn=gum.loadBN('res/asthma.bif')
In [3]:
# display the Bayesian network
gnb.showBN(bn,nodeColor={n:0.9 for n in bn.names()},cmapNode=plt.get_cmap('Blues'))
In [4]:
# display the conditional probability table of asthme given pollution
gnb.showPotential(bn.cpt(bn.idFromName('asthma')),digits=4)
|
| |
---|---|---|
0.1000 | 0.9000 | |
0.2113 | 0.7887 | |
0.1972 | 0.8028 | |
0.2824 | 0.7176 | |
0.4746 | 0.5254 | |
0.5230 | 0.4770 | |
0.6341 | 0.3659 | |
0.8257 | 0.1743 | |
0.8537 | 0.1463 | |
0.9091 | 0.0909 |
Some inference¶
In [5]:
# display the probability distribution of Variable "trafic"
gnb.showPosterior (bn, {}, "traffic" )
In [6]:
# display the probability distribution of Variable "pollution"
gnb.showPosterior ( bn, {}, "pollution")
In [7]:
# display the distribution somewhat differently
gum.getPosterior ( bn, target="pollution")
Out[7]:
|
|
|
|
|
|
|
|
|
|
---|---|---|---|---|---|---|---|---|---|
0.0000 | 0.0355 | 0.4233 | 0.2788 | 0.1475 | 0.0629 | 0.0164 | 0.0219 | 0.0082 | 0.0055 |
In [8]:
# more interesting: display the posterior distribution of "asthme"
# given that we observed that time is 8:00 and weather is cloudy
gnb.showPosterior (bn, evs={'hour' : 8, 'weather' : 'cloudy'}, target="asthma" )
In [9]:
# show the complete model on morning (from 8 to 12)
gnb.showInference(bn,evs={'hour' : [0 if i< 8 or i> 12 else 1 for i in range(24)]})
In [10]:
# show the posterior distributions of all the variables given that
# we observed that heure=8 and meteo=nuageux.
# the tables in beige represent the observations
gnb.flow.row(gnb.getInference(bn,size="9",evs={'hour' : 8, 'weather' : 'cloudy'}),
gnb.getInference(bn,size="9",evs={'hour': 7, 'accident' : 'yes'}),
captions=["When time is 8:00 and weatcher is cloudy","When time is 7:00 and there hase been an accident"])